Molecular Dynamics Simulation of Vascular Network Formation

نویسندگان

  • Paolo Butta
  • Fiammetta Cerreti
  • Vito D. P. Servedio
  • Livio Triolo
چکیده

Endothelial cells are responsible for the formation of the capillary blood vessel network. We describe a system of endothelial cells by means of two-dimensional molecular dynamics simulations of point-like particles. Cells’ motion is governed by the gradient of the concentration of a chemical substance that they produce (chemotaxis). The typical time of degradation of the chemical substance introduces a characteristic length in the system. We show that point-like model cells form network resembling structures tuned by this characteristic length, before collapsing altogether. Successively, we improve the non-realistic point-like model cells by introducing an isotropic strong repulsive force between them and a velocity dependent force mimicking the observed peculiarity of endothelial cells to preserve the direction of their motion (persistence). This more realistic model does not show a clear network formation. We ascribe this partial fault in reproducing the experiments to the static geometry of our model cells that, in reality, change their shapes by elongating toward neighboring cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectroscopic, Docking and Molecular Dynamics Simulation Studies on the Interaction of Etofylline and Human Serum Albumin

The purpose of this study is to investigate the interaction of Etofylline as an established drug for asthma remedy, with the major transport protein in human blood circulation, the human serum albumin (HSA). In this respect, the fluorescence and circular dichroism (CD) spectroscopy techniques, along with the molecular docking and molecular dynamics simulation methods were employed. Analysis of ...

متن کامل

Exploring the Interaction Mechanism of Coumarin with Bovine β-Casein: Spectrofluorometric and Molecular Modeling Studies

This paper is designed to examine the binding behavior of Coumarin with bovine -casein (βCN) through fluorescence spectroscopy and molecular modeling techniques. The data analysis on fluorescence titration experiments at various temperatures represents the enthalpy driven nature for the formation of Coumarin–βCN complex and the prevailed role of hydrogen bonds and van der Waals interactions in...

متن کامل

Effects of Aluminum Incorporation in Tobermorite Structure on Chloride Diffusion: A Molecular Dynamics Simulation Study

In this paper, the effects of different aluminum to silicon ratios in silicate chains of calcium silicate hydrates (C-S-H) are evaluated on the diffusion coefficient of chloride ions by molecular dynamics method. Tobermorite is a crystalline phase that is used for studying C-S-H properties in nano scale, because of its analogous chemical composition to C-S-H. Aluminum incorporation in C-S-H and...

متن کامل

Molecular Dynamics Simulation of Water Transportation through Aquaporin-4 in Rat Brain Cells

This paper investigates the mechanism of water transportation through aquaporin-4(AQP4) of ratbrain cells by means of molecular dynamics simulation with CHARMM software. The AQP4 wasembedded into a bilayer made of Dimystroilphosphatylcholine (DMPC). The results illustrate thatwater molecules move through AQP4's channel with change of orientation of oxygen of eachwater molecule.

متن کامل

Molecular Interaction of Benzalkonium Ibuprofenate and its Discrete Ingredients with Human Serum Albumin

Studying the interaction of pharmaceutical ionic liquids with human serum albumin (HSA) can help investigating whether or not ionic liquid formation can enhance pharmacological profile of the discrete ingredients. In this respect, in the present work, the interactions of Benzalkonium Ibuprofenate, as a well-known active pharmaceutical ionic liquid, Benzalkonium Chloride, and also Sodium Ibuprof...

متن کامل

Molecular Dynamics Simulation of Potassium Chloride Melting(.I. Microcrystal Simulation and Sample Size Effect)

The effect of sample size on the melting parameter of simulated potassium chloride microcrystal is investigated by molecular dynamics simulation. The size of microcrystal is varied from 8 to 4096 ions. The increase in melting temperature with sample size was found to be in good agreement with the theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007